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When the dynamics of any general second order system are cast in a state-space format,
the initial choice of the state vector usually comprises one partition representing system
displacements and another representing system velocities. Co-ordinate transformations can
be defined which result in more general definitions of the state vector. This paper discusses
the general case of co-ordinate transformations of state-space representations for second
order systems. It identifies one extremely important subset of such coordinate
transformations}namely the set of structure-preserving transformations for second order
systems}and it highlights the importance of these. It shows that one particular structure-
preserving transformation results in a new system characterized by real diagonal matrices
and presents a forceful case that this structure-preserving transformation should be
considered to be the fundamental definition for the characteristic behaviour of general
second order systems}in preference to the eigenvalue–eigenvector solutions convention-
ally accepted.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Consider the N-degree-of-freedom second order system characterized by the real (N�N)
matrices {K, D, M} and having displacement vector q and force vector Q:

KqþD’qqþM.qq ¼ Q: ð1Þ

Here, ’qq and .qq represent the first and second derivatives of the vector q with respect to time.
This paper is concerned with transformations to express this general system in different

but equivalent forms. Because system matrices, fK;D;Mg are not always symmetric,
different transformations may be applied to the left and right of these matrices. The
general case is embraced in this paper and subscripts L and R are used to distinguish left

and right transformation matrices. In the special case of systems having symmetric
matrices, the left and right transformations will usually be identical so that symmetry is
preserved after the transformation.

When the damping is low, there is a well-founded pre-occupation with the generalized
eigenvalues of the matrix pair fK;Mg and the associated eigenvectors. Denoting the
diagonal matrix of eigenvalues as K and the corresponding matrices of left and right
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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eigenvectors as fUL;URg; respectively, a general definition of these quantities can be
written as

K�1UT
LK ¼ UT

LM; KURK�1 ¼ MUR: ð2Þ

If all of the eigenvalues are distinct, it is simple to show that with appropriate scaling of
the eigenvectors, equation (2) leads directly to

UT
LKUR ¼ K; UT

LMUR ¼ I: ð3Þ

In some cases where the eigenvalues are not distinct, it is not possible to find full-rank
(N�N) matrices fUL; URg satisfying equation (2) and it follows directly that equation (3)
cannot be satisfied in these cases. Such systems are referred to as defective systems.

There is one other exception to equation (3). This occurs when M is singular. It is
straightforward to provide for this by recognizing that equation (3) essentially describes a
diagonalizing similarity transformation in which the transformed stiffness matrix is K and
the transformed mass matrix is I. If a general scaling is allowed for the eigenvectors,
equation (3) generalizes to

UT
LKUR ¼ KD; UT

LMUR ¼ MD; ð4Þ

where fKD;MDg are diagonal matrices of the transformed system. Equation (2)
generalizes to

*KKDU
T
LK ¼ *MMDU

T
LM KUR

*KKD ¼ MUR
*MMD: ð5Þ

where f *KKD; *MMDg are diagonal matrices dual to {KD, MD} in the sense that they satisfy

*KKDKD ¼ *MMDMD: ð6Þ

One suitable and obvious choice of the dual system is obtained simply through

*KKD ¼ MD; *MMD ¼ KD: ð7Þ

The diagonalizing transformation (of equation (4)) is possible only where the system is not
defective. When {K, M} are both symmetric and when either one of them is positive semi-
definite, then {UL, UR, KD, MD} are real (N�N) matrices and one choice of scaling leads
to UL¼ UR [1]. In other cases, {UL, UR, KD, MD} may sometimes contain complex
numbers.

A system is described as classically damped if the same transformation {UL, UR} that
diagonalizes the mass and stiffness matrices also diagonalizes the damping matrix.
Caughey and O’Kelly [2] discuss this in the context of self-adjoint systems (K ¼ KT;
D ¼ DT; M ¼ MT). The extension to the general case may be considered to be a definition
for the purposes of this paper. For any classically damped system {K, D, M}, there is some
transformation, {UL, UR}, such that

*KKDU
T
LK ¼ *DDDU

T
LD ¼ *MMDU

T
LM;

KUR
*KKD ¼ DUR

*DDD ¼ MUR
*MMD; ð8Þ

where f *KKD; *DDD; *MMDg are diagonal matrices dual to fKD;DD;MDg in the sense that they
satisfy

*KKDKD ¼ *DDDDD ¼ *MMDMD ð9Þ

with fKD;DD;MDg being the diagonal matrices of the transformed system. In this case, an
obvious choice for the duals arises as

*KKD ¼ DDMD; *DDD ¼ KDMD; *MMD ¼ KDDD: ð10Þ
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If this classically damped system is not defective,

UT
LKUR ¼ KD; UT

LDUR ¼ DD; UT
LMUR ¼ MD: ð11Þ

Together {UL, UR} describe a transformation from the original set of displacement
co-ordinates, q, and its corresponding vector of forces, Q, to a new set of displacement
co-ordinates r and the corresponding vector of forces R through

q ¼ URr; R ¼ UT
LQ: ð12Þ

Then, the original equation of motion for a classically damped system is transformed to

KDrþDD’rrþMD.rr ¼ R: ð13Þ

Because the equations in equation (13) are completely decoupled, the combination of
equations (12) and (13) provides for the very efficient calculation of response in the time or
frequency domains through the use of superposition. It also provides for a clear
understanding of the mechanisms through which the system responds (especially when
fUL; URg are real). The left modal matrix, UL, acts to transform physical forces into
corresponding modal forces and the right modal matrix, UR, acts to transform modal
displacements into physical displacements.

For systems that are not classically damped, the situation is not nearly so clear using
present-day methods. In general, there is no pair of (N�N) matrices {UL, UR} (real or
complex) that can simultaneously diagonalize the three system matrices according to
equation (11).

The original system can be represented as a system of first order differential equations in
state-space form. In this case, the two system matrices in the state-space equation each
have dimension (2N� 2N) and the inherent second order nature of the original system is
effectively ignored. The 2N characteristic roots and their associated 2N modal vectors (left
and right) can be computed but, in general, these are complex and their full significance is
difficult to grasp [3].

Many researchers have battled with the implications of complex modes in various
contexts including:

* interpretation of complex modes [1,3–7];
* the search for iterative or approximate solutions for the damped natural frequencies

and for system response using nearby classically damped models [8–12];
* model correlation, model updating and system identification [13–19];
* model reduction of generally damped systems [20–23].

The first priority of this paper is to show that real-valued transformations do exist for
most real second order systems such that system response can be assembled as the direct
sum of contributions from N decoupled single-degree-of-freedom second order systems.
These transformations exist for all real second order systems having no repeated pairs of
characteristic roots and they are referred to here as diagonalizing structure-preserving

transformations.
It is then natural to consider whether there are more general structure-preserving

transformations for second order systems. The second priority of the paper is to show that
there are and that the diagonalizing structure-preserving transformation can be constructed
as the product of a number of the more general structure-preserving transformations.
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2. REAL DIAGONALIZING TRANSFORMATIONS FOR GENERAL
SECOND ORDER SYSTEMS

Define

p :¼ ’qq; P :¼ ’QQ: ð14Þ
Then, it is possible to write equation (1) equivalently in any of the following three forms:

0 K

K D

" #
q

p

" #
�

K 0

0 �M

" #
’qq

’pp

" #
¼

0

I

" #
Q; ð15Þ

K 0

0 �M

" #
q

p

" #
þ

D M

M 0

" #
’qq

’pp

" #
¼

I

0

" #
Q; ð16Þ

0 K

K D

" #
q

p

" #
þ

D M

M 0

" #
.qq

.pp

" #
¼

P

Q

" #
: ð17Þ

Solutions to equation (1) must satisfy all three of equations (15)–(17).
There are only three different (2N� 2N) matrices in equations (15)–(17). Ordinarily, the

characteristic behaviour of the system described in equation (1) is computed by solving a
generalized eigenvalue problem defined either by the two (2N� 2N) matrices in equation
(15) or by the two (2N� 2N) matrices in equation (16). The latter is usually preferred. The
result is a set of characteristic roots (eigenvalues from the generalized eigenvalue problem)
and associated characteristic vectors. It is usual that many, if not all, of the characteristic
roots are complex in which case they and their associated characteristic vectors occur in
complex conjugate pairs. Solving the generalized eigenvalue problem defined by the two
(2N� 2N) matrices of equation (17) yields the squares of these characteristic roots.

An alternative equivalent expression of the characteristic behaviour of the system is
achievable in which only real transformation matrices appear [24]. A modified version of
this expression is given here. Define

K :¼
0 K

K D

" #
; D :¼

K 0

0 �M

" #
; M :¼

D M

M 0

" #
ð18Þ

for the sake of compactness in later expressions. Additionally, define the following
quantities based on diagonal matrices fKD;DD;MDg:

KD :¼
0 KD

KD DD

" #
; DD :¼

KD 0

0 �MD

" #
; MD :¼

DD MD

MD 0

" #
ð19Þ

and note the perfect similarity in structure between equations (18) and (19).
Equation (8) applies only to classically damped systems. Its generalization to the set of

all second order systems can be written as

*KKDU
T
LK ¼ *DDDU

T
LD ¼ *MMDU

T
LM;

KUR
*KKD ¼ DUR

*DDD ¼ MUR
*MMD; ð20Þ

where *KKD; *DDD; *MMD

� �
are real diagonal matrices dual to KD; DD; MD

� �
in the sense that

they satisfy

*KKDKD ¼ *DDDDD ¼ *MMDMD ð21Þ
and UL;UR

� �
are real (2N� 2N) matrices obviously having properties that are very like

matrices of left and right eigenvectors but these are not matrices of eigenvectors. An
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obvious choice for the duals is

*KKD :¼
�MDDDMD MDKDMD

MDKDMD 0

" #
; *DDD :¼

MDKDMD 0

0 �KDMDKD

" #
;

*MMD :¼
0 KDMDKD

KDMDKD �KDDDKD

" #
ð22Þ

These are obtained by finding the inverses of KD; DD; MD

� �
; respectively, and

multiplying each individual (N�N) block by (K2
DM

2
D).

Theorem If there is no pair of integers (i,j) for which it is possible to find real scalar, a,

satisfying

KDði; iÞ ¼ aKDð j; jÞ; DDði; iÞ ¼ aDDð j; jÞ; MDði; iÞ ¼ aMDð j; jÞ with 14i5j4N;

ð23Þ

then the system has no identical pairs of characteristic roots. In all such cases, the system is

not defective and it is found that

UT
LKUR ¼ KD; UT

LDUR ¼ DD; UT
LMUR ¼ MD: ð24Þ

A proof of this theorem is given in Appendix A based on the development of UL; UR

� �
from the left and right matrices of complex modes respectively.

Equations (24) are a concise expression of the fact that for almost every second order
system comprising the real (N�N) matrices {K, D, M}, there is a real diagonalizing
transformation in the form of the real (2N� 2N) matrices UL; UR

� �
which maps this onto

a diagonal second order system comprising {KD, DD, MD}.
The development of equations (24) from a conventional complex formulation is

summarized in Appendix A for convenience so that the relationship between UL; UR

� �
and the more familiar complex modal matrices can be understood. If any two of the
equations in equations (24) are satisfied and if UL; UR

� �
are invertible (which they must

be if the system is not defective), then it is straightforward to show the third equation must
also be satisfied. This follows immediately from the observations that if K is invertible,

DK�1D 	 M ð25Þ

and if M is invertible

DM�1D 	 K: ð26Þ

Cases where K is not invertible can be addressed directly by replacing K with ðKþ eDKÞ
where DK is any matrix chosen such that ðKþ eDKÞ is non-singular for any positive real
scalar, e, smaller than some limiting value and taking the limit as e! 0. Similarly for cases
in which M is singular. An alternative is to select some real eigenvalue shift, a, in the
eigenvalues such that the system having the shifted eigenvalues is represented as
fðKþaDþ a2MÞ; ðDþ 2aMÞ; ðMÞg instead of fðK; D; Mg:

Although the link with the complex modes is made in Appendix A, this paper treats
equations (24) as the fundamental definition of characteristic behaviour for real second
order systems. Partition UL;UR

� �
as follows

UR ¼:
WRD XRD

YRD ZRD

" #
; UL ¼:

WLD XLD

YLD ZLD

" #
: ð27Þ
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Then, the following features motivate the acceptance of equation (24) as the fundamental
definition of characteristic behaviour for second order systems:

* Systems comprising real matrices {K, D, M} produce real outcomes, UL;UR

� �
and

{KD, DD, MD} having direct physical interpretations.
* The diagonalizing transformation is well defined for systems in which either (or both) of

{KD, MD} are singular. In contrast, none of the possible definitions of complex roots
and associated eigenvectors can deal with the case where both are singular. Some
formulations can deal with the case where KD is singular but not MD and others with
the converse case. This point is clear when one considers the case

K ¼
1 0

0 0

" #
;D ¼

1 0

0 1

" #
;M ¼

0 0

0 1

" #( )
:

* There is no fundamental distinction between ‘‘real roots’’ and ‘‘complex roots’’ in the
diagonalizing transformation. The rates of change of UL;UR

� �
and {KD, DD, MD} are

all well defined with respect to any parameter which causes a pair of complex roots to
transform into a pair of real roots. The derivatives of a pair of complex modes with
respect to any such parameter are undefined at the instant of change between complex
and real modes.

* For classically damped systems, the mass-normalized modes of the undamped system
appear in {WLD, WRD, ZLD, ZRD} (with WLD¼ ZRD and WLD¼ ZRD) and matrices
{XLD, XRD, YLD, YRD} contain only zeros.

* For self-adjoint systems (systems characterized by symmetric {K, D, M}) an
appropriate choice of scaling leads to WLD¼ WRD;XLD¼ XRD;YLD¼ YRD and
ZLD¼ ZRD:

* For conservative systems characterized by symmetric {K,M} and skew-symmetric D, an
appropriate choice of scaling leads to WLD¼ ZRD XLD¼� XRD; YLD¼� YRD and
ZLD¼ ZRD:

* The structure of KD is identical to that of K: Similarly, the structure of DD is identical to
that of D and the structure of MD is identical to that of M:

When M is full rank, it is always possible to scale UL;UR

� �
by real scalars such that

MD=I. For symmetric {K,D,M}, simultaneously achieving UL ¼ UR and MD=I is
possible only if M is positive definite.

A simple two-degree-of-freedom example is provided here. Suppose the mass, damping
and stiffness matrices are given by

M ¼
1 0

0 1

" #
; D ¼

0�4 �0�4
�0�4 0�4

" #
; K ¼

2 �1

�1 5

" #
: ð28Þ

The transformed diagonal matrices are

KD ¼ diag 1�752 5�138
� �

; DD ¼ diag 0�1768 0�6232
� �

; MD ¼ diag 1�0 1�0
� �

ð29Þ
and the transformation is given by

WLD ¼ WRD ¼
0�9731 �0�3541
0�3171 0�9451

" #
; XLD ¼ XRD ¼

�0�03079 �0�09237
0�09033 �0�02926

" #
; ð30Þ

YLD ¼ YRD ¼
�0�05394 0�4746
�0�1582 0�1503

" #
; ZLD ¼ ZRD ¼

0�9786 �0�2965
0�3011 0�9633

" #
:
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3. GENERAL CO-ORDINATE TRANSFORMATIONS FOR SECOND ORDER SYSTEMS
AND STRUCTURE-PRESERVING TRANSFORMATIONS

In equations (24), UL;UR

� �
have special significance as the transformation taking

the original system {K, D, M} into diagonal form {KD, DD, MD}. In this section equations
(24) are used to show that any pair of (2N� 2N) matrices, TL;TR

� �
; implicitly defines a

co-ordinate transformation for an N-degree-of-freedom second order system. The special
subset of structure-preserving transformations is also defined here.

Any pair of (N�N) matrices, {TL,TR} can be said to define a co-ordinate
transformation according to

q ¼ TRr; R ¼ TT
LQ; KrrrþDrr’rrþMrr.rr ¼ R;

with

Krr ¼ TT
LKTR; Drr ¼ TT

LDTR; Mrr ¼ TT
LMTR: ð31Þ

Equations (31) comprise the general case of what is normally considered (in the structural
dynamics community) to be a co-ordinate transformation. Co-ordinate transformations in
the form of equations (31) will be described as first order transformations here since they
are the only transformations which would ever be applied to a first order system ðM ¼ 0Þ:
The transformation of equation (12) (which can diagonalize any classically damped
system) is a special case of a first order co-ordinate transformation.

Provided that {TL, TR} are both square and full rank, they may be chosen arbitrarily
and the same response will be computed for the system using either the original or the
transformed representation. The same characteristic behaviour will also be obtained in
both cases. If TL and TR have fewer columns than rows, then the co-ordinate
transformation implicitly imposes constraints and reduces the number of system degrees
of freedom. In this case, both the response and the characteristic behaviour are modified in
general and the transformation is a model-reducing transformation.

The space of co-ordinate transformations for second order systems includes the full
space of all first order co-ordinate transformations as a subspace. Suppose, now, that one
pair of (2N� 2N) matrices, TL1;TR1

� �
; is selected arbitrarily and that another pair of

(2N� 2N) matrices, TL2;TR2

� �
is computed to satisfy

TL1TL2 ¼ UL; TR1TR2 ¼ UR: ð32Þ

Substitute these into equations (24) to obtain

TT
L2 TT

L1KTR1

	 

TR2 ¼ KD; TT

L2 TT
L1DTR1

	 

TR2 ¼ DD;

TT
L2 TT

L1MTR1

	 

TR2 ¼ MD: ð33Þ

Evidently, a transformation has been carried out having the following effects:

K ) TT
L1KTR1

	 

¼:

A11 A12

A21 A22

" #
; ð34Þ

D ) TT
L1DTR1

	 

¼:

B11 B12

B21 B22

" #
; ð35Þ

M ) TT
L1MTR1

	 

¼:

C11 C12

C21 C22

" #
ð36Þ
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and matrices TL2;TR2

� �
now assume the diagonalizing transformation role formerly played

by UL;UR

� �
:

If TL1;TR1

� �
are chosen completely arbitrarily, the transformed representation of the

system will lack some of the structure possessed by the original representation. The
primary focus of this paper is on structure-preserving similarity transformations for second
order systems.

Transformation TL1;TR1

� �
is defined as a structure-preserving transformation if and

only if

A11 ¼ 0; B12 ¼ 0; B21 ¼ 0; C22 ¼ 0; ð37Þ

A12 ¼ B11 ¼ A21; C12 ¼ �B22 ¼ C21 A22 ¼ C11: ð38240Þ

In such cases, the original system {K, D, M} is transformed into a new system {K0, D0, M0}
having the same characteristic roots as the original system. Note that not all of these
conditions are independent. Some are automatically satisfied as a direct result of equations
(25) and (26).

4. TIME-DOMAIN RESPONSE USING THE DIAGONALIZING TRANSFORMATION

Equations (15) and (16) are first order state-space representations insofar as they each
involve the zeroth and first derivatives of the state vector. Both of these equations are
commonly encountered in the analysis of generally damped systems. Equation (17) is a
second order state-space representation since it involves the zeroth and second derivatives
of the state-vector only. The definition of p is implicit in all three of equations (15)–(17)
and the definition of P is implicitly contained also in equation (17). Any one of equations
(15)–(17) is normally adequate to describe the time-domain behaviour of the system.

Consider that the following co-ordinate transformation is carried out based on matrices
{WRD, XRD, YRD, ZRD} (which comprise UR (cf., equation (27)))

q

p

" #
¼

WRD XRD

YRD ZRD

" #
v

u

" #
: ð41Þ

Together, vectors u and v represent the state of the system unambiguously. Note that if all
of the original displacement co-ordinates are translations, the (SI) units for v are (m) and
the (SI) units for u are (m/s)}in perfect consistency with the units for q and p respectively.
Define new excitation vectors, U and V, in terms of the force vector, Q, and its first
derivative, P using {WLD, XLD, YLD, ZLD} as

U

V

" #
¼

WLD XLD

YLD ZLD

" #T
P

Q

" #
: ð42Þ

Substitute for the state vector in each of equations (15)–(17) using equation (41) and pre-
multiply each of these three equations by the UL

T : Provided that equations (24) are
satisfied, it is evident that the transformed equations are

0 KD

KD DD

" #
v

u

" #
�

KD 0

0 �MD

" #
’vv

’uu

" #
¼

YT
LD

ZT
LD

" #
Q; ð43Þ

KD 0

0 �MD

" #
v

u

" #
þ

DD MD

MD 0

" #
’vv

’uu

" #
¼

WT
LD

XT
LD

" #
Q; ð44Þ
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0 KD

KD DD

" #
v

u

" #
þ

DD MD

MD 0

" #
.vv

.uu

" #
¼

U

V

" #
: ð45Þ

Taking equation (45) in conjunction with equations (41) and (42) yields a diagonalized

second order state-space representation of the original system. Comparing equation (45)
with equation (17) makes it clear that response can be computed as the sum of responses
from N decoupled systems.

If U was identical to the first derivative of V with respect to time, there could be no
hesitation in identifying these decoupled systems as single-degree-of-freedom second order
systems. In general, U is not identical to the first derivative of V with respect to time. In
fact, this identity holds true only for classically damped systems. Correspondingly (and
more importantly) v is not equal to the first derivative of u with respect to time when
forcing is present on the system but when the system is in free vibration (Q=0), this
identity holds as can be seen from equation (43) or (44).

To support the assertion that there is a real co-ordinate transformation mapping
(almost) any general second order system onto a second order system characterized by
diagonal matrices, it is necessary only to demonstrate that there is some second order
system described by

KDzþDD ’zzþMD .zz ¼ Z ð46Þ
and some set of relationships giving Z(t) in terms of Q(t) and q(t) in terms of z(t) such that
q(t) may be computed from Q(t) as the sum of N individual contributions using equation
(41). Expanding equation (43) leads to

KDðu� ’vvÞ ¼ YT
LDQ; ð47Þ

MD ’uuþDDuþ KDv ¼ ZT
LDQ: ð48Þ

Differentiate equation (48), substitute for v using equation (47) and apply the definition of
P in equation (14) to obtain

MD .uuþDD ’uuþ KDu ¼ ðYT
LDQþ ZT

LDPÞ: ð49Þ
This is in precisely the form of equation (46). The forcing term on the right-hand side of
equation (49), is computed as a linear combination of Q(t) and P(t). To recover the
response, q(t), it is first necessary to generate v(t) from u(t). This can be achieved directly
using equation (48) if the first derivative of u(t) has been stored together with u(t).
Equation (41) can then be employed to recover q(t) and p(t).

5. TIME-DOMAIN RESPONSE UNDER FULLY GENERAL TRANSFORMATIONS

Consider again that (N�N) matrices, {WL1, XL1, YL1, ZL1} and {WR1, XR1, YR1, ZR1},
are arbitrarily selected and that {A11, A12, A21, A22}, {B11, B12, B21, B22} and {C11, C12,
C21, C22} are then computed according to equations (34)–(36). Apply the transformation
as follows:

q

p

" #
¼

WR1 XR1

YR1 ZR1

" #
v

u

" #
¼: TR1

v

u

" #
;

U

V

" #
¼

WL1 XL1

YL1 ZL1

" #T
P

Q

" #
¼: TT

L1

P

Q

" #
:

ð50Þ
Vectors {u, v, U, V} here represent different quantities from those of equations (41) and
(42). Evidently, the system response can be computed using any one of the following three
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equations obtained from equations (15)–(17) by applying equations (50)

A11 A12

A21 A22

" #
v

u

" #
�

B11 B12

B21 B22

" #
’vv

’uu

" #
¼

YT
L1

ZT
L1

" #
Q; ð51Þ

B11 B12

B21 B22

" #
v

u

" #
þ

C11 C12

C21 C22

" #
’vv

’uu

" #
¼

WT
L1

XT
L1

" #
Q; ð52Þ

A11 A12

A21 A22

" #
v

u

" #
�

C11 C12

C21 C22

" #
.vv

.uu

" #
¼

U

V

" #
: ð53Þ

To compute the time-domain response, it is only strictly necessary to be able to compute
the second derivative of q given its zeroth and first derivatives. It is obviously
advantageous to compute the third derivative also since this provides a numerical
integration process with considerable additional information. Equations (17), (45) and
(53) all provide for the direct computation of this derivative but all three of these require
P } the first derivative of force with respect to time. Any errors in the estimation of
Pð¼ ’QQÞ will affect only the calculated third derivative of displacement with respect to time.

6. FREQUENCY-DOMAIN RESPONSE COMPUTATIONS

The ability to compute the steady state response of a system to harmonic forcing is one
of the key functions of any model. Conventionally, a complex dynamic stiffness matrix is
formed, forces are represented by a complex vector and response is computed as another
complex vector. Equation (17) provides what is arguably a more direct approach.

Discount, initially, that in the steady state, pð¼ ’qqÞ has a known magnitude and phase
relationship to q and that Pð¼ ’QQÞ has a known magnitude and phase relationship to Q.
Using only the knowledge that all of these quantities vary sinusoidally with respect to time

q

p

" #
¼

qcos qsin

pcos psin

" #
cosðotÞ
sinðotÞ

" #
;

P

Q

" #
¼

Pcos Psin

Qcos Qsin

" #
cosðotÞ
sinðotÞ

" #
: ð54Þ

Recognizing that differentiating a sinusoidal function twice returns �o2 times the same
function, the following is obtained from equation (17):

0 K

K D

" #
� o2 D M

M 0

" #" #
qcos qsin

pcos psin

" #
cosðotÞ
sinðotÞ

" #
¼

Pcos Psin

Qcos Qsin

" #
cosðotÞ
sinðotÞ

" #
: ð55Þ

Because equation (55) must be true for all time, t, the time dependency can be removed.
Now, incorporate the known relationships

Pcos ¼ �oQsin; Psin ¼ oQcos;

pcos ¼ �oqsin; psin ¼ oqcos ð56Þ
to find

0 K

K D

" #
� o2 D M

M 0

" #" #
IðN�NÞ 0

0 oIðN�NÞ

" #
qcos qsin

�qsin qcos

" #
¼

0 oI N�Nð Þ

I N�Nð Þ 0

" #

�
Qcos Qsin

�Qsin Qcos

" #
: ð57Þ
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With some trivial simplification

ðK� o2MÞ oD

�oD ðK� o2MÞ

" #
qcos qsin

�qsin qcos

" #
¼

Qcos Qsin

�Qsin Qcos

" #
: ð58Þ

Equation (58) can be expressed compactly using the algebra of complex numbers and this
is a computationally sensible way to solve this equation directly.

If the diagonalizing transformation is applied to the system before computing frequency
response, it is found that at each value of o, the vector coefficients, {ucos, vcos, usin, vsin} of
cos(ot) and sin(ot) must be determined for vectors u and v as defined in equation (41).
Complex numbers are not useful in this case since u=’vv and, as a result, the system of
equations to be solved does not have the structure of equation (58). However, the system
of equations does comprise N decoupled pairs of equations and for this reason, solution is
computationally very efficient:

qcos qsin

pcos psin

" #
¼ UR KD � o2MD

� ��1
UT

L

Pcos Psin

Qcos Qsin

" #
: ð59Þ

As expected, the diagonalizing transformation enables frequency response to be
composed as the superposition of contributions from individual single-degree-of-freedom
systems.

7. MODEL-REDUCING STRUCTURE-PRESERVING TRANSFORMATIONS

All of the transformations dealt with up to this point have been square and full rank.
The transformed models in all cases are perfectly equivalent to the original models
provided that the transformation matrices are used correctly to map from physical force
sets into the new force sets and then to map from the response computed in the new co-
ordinates back to physical responses. There is no obvious role for rank-deficient
transformations but transformations that are rectangular are very common and very
useful}especially for the purposes of model reduction. These are considered briefly here.

First order co-ordinate transformations which are model reducing are generated by
selecting (N�M) transformation matrices, TR and TL, in equation (31) with M5N. There
is a substantial literature on these first order model-reducing transformations [25–28].

By extension, it is possible to generate arbitrary (2N� 2M) matrices, TL1;TR1

� �
; with

M 5 N and using these, a new reduced-dimension representation of the second order
system can be generated in the form of a pair of equations comprising equation (50) and
any one of equations (51)–(53) where the definitions of equations (34)–(36) are applied.

Model-reducing transformations may be structure-preserving just as square transforma-
tions may be. The transformation represented by {WL1, XL1, YL1, ZL1} and {WR1, XR1,
YR1, ZR1} is a structure-preserving model-reducing transformation for the system {K, D,
M} if there is some new system represented by the (M�M) matrices {K0, D0, M0} such that

WL1 XL1

YL1 ZL1

" #T
0 K

K D

" #
WR1 YR1

YR1 ZR1

" #
¼

0 K0

K0 D0

" #
; ð60Þ

WL1 XL1

YL1 ZL1

" #T
K 0

0 �M

" #
WR1 YR1

YR1 ZR1

" #
¼

K0 0

0 �M0

" #
; ð61Þ
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WL1 XL1

YL1 ZL1

" #T
D M

M 0

" #
WR1 YR1

YR1 ZR1

" #
¼

D0 M0

M0 0

" #
: ð62Þ

In the case of square (full rank) structure-preserving transformations, any two equations
from equations (60)–(62) would be sufficient to ensure that the third equation was
automatically satisfied. This is not the case for model-reducing transformations. One
particular model-reducing transformation is introduced in reference [24] as an extension of
static reduction [25] to the context of generally damped systems. This transformation
satisfies equations (60) and (61) but it does not also satisfy equation (62) and strictly,
therefore, it is not structure preserving.

8. EXAMPLE

A 4-degree of freedom system is considered. The stiffness and mass matrices for this
system are diagonal and the damping matrix is fully populated. These matrices are,

K ¼ diag½ 0�7 1 4 9 �; M ¼ diag½ 1 1 1 1 �; D ¼

0�9 �0�5 0�4 0�2
�0�5 0�8 �0�8 �0�2
0�4 �0�8 1�0 0�2
0�2 �0�2 0�2 0�6

2
6664

3
7775:

ð63Þ

In this example, three different transformations are given. The purpose of the example is
simply to illustrate that these transformations do exist for general systems. There is no loss
of generality in the fact that the example begins with diagonal K and M since it is trivial to
transform any general system into this form.

8.1. TRANSFORMATION TO DIAGONAL FORM

The transformation to diagonal form as represented by equations (15)–(17) results in the
following diagonal system {KD, DD, MD}:

¼

½diagðKDÞ
9�0296807E� 001

9�9076461E� 001

3�1653441Eþ 000

8�8989084Eþ 000

2
6664

diagðDDÞ
4�1698283E� 001

1�6526387Eþ 000

6�5971716E� 001

5�7066133E� 001

diagðMDÞ�
1�0000000E þ 000

1�0000000E þ 000

1�0000000E þ 000

1�0000000E þ 000

3
7775 : ð64Þ

As the system matrices are symmetrical, the left and right transformation matrices are
identical and these are as follows:

WLD ¼ WRD

¼

6�6491295E� 001 1�0006184Eþ 000 �2�2141319E� 001 �2�5219434E� 002

8�1094897E� 001 �6�1504382E� 001 1�6717115E� 001 3�6003530E� 002

�4�8738704E� 002 4�2683032E� 002 9�8786480E� 001 �5�3803347E� 002

�6�3093553E� 003 1�9096531E� 003 4�3051685E� 002 9�9856527E� 001

2
66664

3
77775;

ð65Þ
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XLD ¼ XRD

¼

�2�1060413E� 001 1�9665720E� 001 6�2142025E� 002 1�6907682E� 002

1�8482239E� 001 1�0314957E� 001 �2�7215087E� 001 �1�4883910E� 002

1�1067568E� 001 �2�1618738E� 001 5�9168543E� 002 2�4662662E� 002

2�0400201E� 003 �3�7974458E� 002 �1�1128691E� 002 1�8013300E� 003

2
66664

3
77775

ð66Þ

YLD ¼ YRD

¼

1�9016880E� 001 �1�9484099E� 001 �1�9670089E� 001 �1�5045991E� 001

�1�6688872E� 001 �1�0219695E� 001 8�6145113E� 001 1�3245055E� 001

�9�9936609E� 002 2�1419080E� 001 �1�8728880E� 001 �2�1947077E� 001

�1�8420730E� 003 3�7623749E� 002 3�5226137E� 002 �1�6029870E� 002

2
66664

3
77775;

ð67Þ

YLD ¼ YRD

¼

7�5273125E� 001 6�7561509E� 001 �2�6240935E� 001 �3�4867994E� 002

7�3388121E� 001 �7�8551279E� 001 3�4671375E� 001 4�4497201E� 002

�9�4888564E� 002 3�9996266E� 001 9�4883030E� 001 �6�7877375E� 002

�7�1600087E� 003 6�4667711E� 002 5�0393474E� 002 9�9753732E� 001

2
66664

3
77775

ð68Þ

8.2. AN ARBITRARY STRUCTURE-PRESERVING TRANSFORMATION

An arbitrary structure-preserving transformation is generated directly to demonstrate
that it can be done. The following matrices will be found to transform the system
according to equations (34)–(36) and to satisfy the constraints of structure preservation in
equations (37)–(40).

WLI ¼ WRI

¼

5�8082202E� 001 1�0606094Eþ 000 �7�9348355E� 001 �1�6982684E� 003

�1�3353938E� 001 5�4275858E� 004 4�5278829E� 001 �2�3212389E� 001

�4�2391150E� 002 �2�6496824E� 001 �7�9187894E� 001 5�2685301E� 001

8�6497662E� 003 �1�2107435E� 002 �1�2584453E� 002 �8�4738303E� 002

2
66664

3
77775;

ð69Þ

XLI ¼ XRI

¼

�9�1013738E� 002 1�2696448E� 002 �5�6378918E� 002 2�5574612E� 001

1�8658541E� 001 1�0156098Eþ 000 �1�7915443E� 001 �2�7315635E� 001

�3�1802849E� 001 �5�5898336E� 001 �3�6778518E� 004 7�6861594E� 001

�3�6984937E� 002 �6�1840484E� 002 �9�0848782E� 002 1�9258083E� 002

2
66664

3
77775

ð70Þ
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YLI ¼ YRI

¼

9�0393835E� 002 �4�9401226E� 002 3�7803968E� 001 �5�4316129E� 001

1�2632639E� 001 �5�8275486E� 001 �8�5166588E� 001 5�2878138E� 001

1�4315547E� 001 1�8690032E� 001 8�3910214E� 001 �1�4456001Eþ 000

�9�4813229E� 003 1�4693724E� 001 1�9231113Eþ 000 �5�6421113E� 001

2
66664

3
77775

ð71Þ

ZLI ¼ ZRI

¼

5�5143953E� 001 9�9066112E� 001 �4�7183597E� 001 �2�6369320E� 001

�4�4545625E� 001 �9�9611583E� 001 1�5624943E� 001 7�4259125E� 001

�1�1490259E� 002 5�1678516E� 003 1�2390942E� 001 �4�6207878E� 001

2�9555283E� 001 5�2165121E� 001 8�7942317E� 002 �8�2296852E� 001

2
66664

3
77775:

ð72Þ
Creating arbitrary structure-preserving transformations is relatively straightforward if the
diagonalizing transformation is known. Work continues on methods for finding structure-
preserving transformations as steps towards the diagonalizing transformation.

It is worth noting that the structure-preserving properties do not ensure that the
transformed system matrices will be positive definite. In the present case, none of the
system matrices in the transformed system, {K0, D0, M0}, are positive definite. Despite this,
the characteristic roots and system response will be computed accurately.

Matrix K after the transformation:

2�1712934E� 001 5�2785217E� 001 �2�7825400E� 001 1�1827036E� 001

5�2785217E� 001 6�7101092E� 001 �6�6523709E� 001 8�3853412E� 002

�2�7825400E� 001 �6�6523709E� 001 �2�1152355Eþ 000 1�1903511Eþ 000

1�1827036E� 001 8�3853412E� 002 1�1903511Eþ 000 �1�7539227Eþ 000

2
6664

3
7775

ð73Þ
Matrix D after the transformation:

4�2982498E� 001 6�2870874E� 001 �6�7251128E� 001 �5�3743574E� 002

6�2870874E� 001 6�4565424E� 001 �1�1594473Eþ 000 1�7679072E� 001

�6�7251128E� 001 �1�1594473Eþ 000 5�5212756E� 002 1�2353467Eþ 000

�5�3743574E� 002 1�7679072E� 001 1�2353467Eþ 000 �1�1773734Eþ 000

2
6664

3
7775;

ð74Þ

Matrix M after the transformation:

1�3250830E� 001 2�2376771E� 001 �3�0609591E� 001 3�3731385E� 001

2�2376771E� 001 �7�0041013E� 002 �4�4549000E� 001 5�7181178E� 001

�3�0609591E� 001 �4�4549000E� 001 1�6152710E� 001 8�8852543E� 002

3�3731385E� 001 5�7181178E� 001 8�8852543E� 002 �9�7504850E� 001

2
6664

3
7775:

ð75Þ
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8.3. A TRANSFORMATION TO ‘‘TRIDIAGONAL FORM’’ WHICH DOES NOT PRESERVE

STRUCTURE

The origins of the transformations discussed in this paper lie in the use of Clifford
Algebra as a tool for expressing the dynamics of second order systems [24]. Preservation of
structure was not considered in reference [24] and if that is not a pre-requisite, it is
attractive (and easy) to effect an initial transformation TL1;TR1

� �
; such that

TT
L1

K 0

0 �M

" #
TR1 ¼

IðN�NÞ 0

0 �IðN�NÞ

" #
; TT

L1

0 K

K D

" #
TR1 ¼

A1 B1

C1 R1

" #
: ð76Þ

Evidently, this is not a structure-preserving transformation but it does preserve symmetry.
Subsequent transformations, TLk;TRk

� �
; can then be carried out such that the cumulative

transformation at every stage is

TT
Lk

IðN�NÞ 0

0 �IðN�NÞ

" #
TRk ¼

IðN�NÞ 0

0 �IðN�NÞ

" #
;

TT
Lk

Aðk�1Þ Bðk�1Þ

Cðk�1Þ Rðk�1Þ

" #
TRk ¼

Ak Bk

Ck Rk

" #
: ð77Þ

Using extensions of some now standard methods in matrix analysis, matrices {Ak, Bk, Ck,
Rk} can be driven progressively towards tridiagonal form without any iteration } that is
to say, the number of numerical operations utilized is fixed only by the dimensions of the
system. The cumulative transformation which achieves this tridiagonalization is presented
now for the example system. The transformation matrices are termed {WTriDi, XTriDi,
YTriDi, ZTriDi}. Because the system is symmetric, and all of the transformations preserve
symmetry there is no need to distinguish between the left and right transformation
matrices:

1�0000000E þ 000

¼

1�1952286Eþ 000 0�0000000Eþ 000 0�0000000Eþ 000 0�0000000Eþ 000

0�0000000Eþ 000 1�0000000Eþ 000 0�0000000Eþ 000 0�0000000Eþ 000

0�0000000Eþ 000 0�0000000Eþ 000 �4�0248662Eþ 001 �3�0186496E� 001

0�0000000Eþ 000 0�0000000Eþ 000 �2�0124331E� 001 �2�6603710E� 001

2
6664

3
7775;

ð78Þ

XTriDi

¼

0:0000000Eþ 000 0:0000000Eþ 000 0:0000000E þ 000 0:0000000Eþ 000

0:0000000Eþ 000 0:0000000Eþ 000 0:0000000E þ 000 0:0000000Eþ 000

0:0000000Eþ 000 0:0000000Eþ 000 �1:1436578E � 002 �5:4654704E� 002

0:0000000Eþ 000 0:0000000Eþ 000 �5:7182889E � 003 �1:1436578E� 002

2
6664

3
7775;

ð79Þ
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YTriDi

¼

0�0000000Eþ 000 0�0000000Eþ 000 0�0000000Eþ 000 0�0000000Eþ 000

0�0000000Eþ 000 0�0000000Eþ 000 �1�8950854E� 002 1�1171348E� 016

0�0000000Eþ 000 0�0000000Eþ 000 2�9347540E� 002 1�7154867E� 002

0�0000000Eþ 000 0�0000000Eþ 000 �1�0607221E� 001 �3�4309733E� 002

2
6664

3
7775;

ð80Þ
ZTriDi

¼

1�0000000Eþ 000 0�0000000Eþ 000 0�0000000Eþ 000 0�0000000Eþ 000

0�0000000Eþ 000 �7�4535599E� 001 �6�6693596E� 001 4�9651038E� 016

0�0000000Eþ 000 5�9628479E� 001 �6�6556357E� 001 4�5013902E� 001

0�0000000Eþ 000 2�9814240E� 001 �3�3621276E� 001 �9�0027805E� 001

2
6664

3
7775:

ð81Þ
The final matrices {A3, B3, R3} from equation (77) are
A3

¼

0 0 0 0

0 0 �0:01895085380144 0

0 �0�01895085380144 0�29647786986852 �0�25263348437028
0 0 �0�25263348437028 �0�20496038548204

2
6664

3
7775; ð82Þ

B3

¼

0�83666002653408 0 0 0

0 �0�74535599249993 �0:66693596342097 0

0 �1�48919685962010 1�69885063401876 0�96946240184080
0 0 0�00311023330480 �2�67923251869012

2
6664

3
7775

ð83Þ
R3

¼

0�90000000000000 0�67082039324994 0 0

0�67082039324994 1�72444444444444 0:27079877780442 0

0 �0�27079877780442 0�25173559441080 0�29752144238109
0 0 0�29752144238109 �0�51533744553123

2
6664

3
7775
ð84Þ

and C3=B3
T.

It is straightforward to demonstrate numerically that the characteristic roots of the
transformed system are identical to the characteristic roots of the original one.

9. CONCLUSIONS

This paper discusses general co-ordinate transformations for second order systems. It
notes that the full set of possible co-ordinate transformations for second order systems
includes as a major subset the set of structure-preserving transformations. This set of
transformations is defined concisely by equations (60)–(62) and it includes as a subset the
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set of all first order co-ordinate transformations which coincide with the view of
co-ordinate transformations established in the structural dynamics community.

Within the set of structure-preserving co-ordinate transformations for (almost) any
given system, there is a transformation involving only real numbers that transforms the
original system into a new form in which the system matrices are real and diagonal. The
only exceptions are defective systems. A route to the determination of this particular
diagonalizing transformation is given in Appendix A beginning with solution of the
well-known eigenvalue problem in complex numbers. Using this diagonalizing
transformation, response in the time or frequency domain can be computed as the
superposition of responses of N single-degree-of-freedom second order systems.

The implications of the paper are many. The use of structure-preserving transforma-
tions for second order systems may ultimately lead to improved computational
performance in the determination of system characteristic behaviour}possibly through
constructing the diagonalizing transformation as the product of a large number of
elementary structure-preserving transformations. More importantly, though, it shows
some prospects for substantially improved clarity in the study of generally damped
systems.
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APPENDIX A: DERIVATION OF EQUATIONS (24) FROM A STATE-SPACE APPROACH

Begin with this form of the equation for the characteristic roots which implicitly
requires that both K and M are non-singular. The case where either one is singular (or
both are) can be dealt with by taking the limit:

EL FL

GL HL

" #T
0 K

K D

" #
ER FR

GR HR

" #
¼

S1 0

0 S2

" #
; ðA:1Þ

EL FL

GL HL

" #T
K 0

0 �M

" #
ER FR

GR HR

" #
¼

IðN�NÞ 0

0 IðN�NÞ

" #
: ðA:2Þ

Equations (A.1) and (A.2) find the left characteristic vectors as well as the right. Matrices
S1 and S2 are diagonal. Where complex roots occur, they occur in conjugate pairs. If 2P of
the 2N roots are complex, arrange the roots and vectors such that S2(k,k)=conj(S1(k,k))
for k4P. The remaining 2Q (with Q=N�P) roots are real.
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A.1 . SELF-ADJOINT SYSTEMS WITH M POSITIVE DEFINITE AND BOTH D AND K POSITIVE

SEMI-DEFINITE

Consider, initially, the class of self-adjoint systems with positive definite M and positive
semi-definite D and K. For these systems, the real roots are all negative (or zero) [1,23] and
they occur in two distinct groups. For one half of the real roots, the associated right
vectors (columns (P+1:N) of ER and GR) comprise purely real entries when the scaling of
equation (A.2) is applied. For the other half of the real roots, the associated right vectors
(columns (P+1:N) of FR and HR) comprise purely imaginary entries. Similar statements
apply to the left vectors. Define the following useful matrix:

J ¼

1ffiffi
2

p IðP�PÞ 0 �jffiffi
2

p IðP�PÞ 0

0 IðQ�QÞ 0 0

1ffiffi
2

p IðP�PÞ 0 jffiffi
2

p IðP�PÞ 0

0 0 0 jIðQ�QÞ

2
666664

3
777775; JTJ ¼

IðN�NÞ 0

0 �IðN�NÞ

" #
: ðA:3Þ

Post-multiply equations (A.1) and (A.2) by J and pre-multiply by JT. All imaginary
components are eliminated from the equations by this action and the real matrices
fW0

LD; X
0
LD; Y

0
LD; Z

0
LDg; fW0

RD; W
0
RD; Y

0
RD; Z

0
RDg; and fSx; Sy; Szg are obtained

with fSx; Sy; Szg diagonal:

W0
LD X0

LD

Y0
LD Z0

LD

" #T
0 K

K D

" #
W0

RD X0
RD

Y0
RD Z0

RD

" #
¼

Sx Sy

Sy Sz

" #
; ðA:4Þ

W0
LD X0

LD

Y’LD Z’LD

" #T
K 0

0 �M

" #
W0

RD X0
RD

Y0
RD Z0

RD

" #
¼

IðN�NÞ 0

0 �IðN�NÞ

" #
ðA:5Þ

The primes are used here because left and right versions of matrices W, X, Y, Z will be
defined differently in due course. Although there is actually no difference between the left
and right versions of these matrices in the case of the class of second order systems being
considered at present, the distinction between the two is maintained for use in the more
general cases.

Note the following about the contents of Sx, Sy and Sz:

Sxðk; kÞ ¼ realðS1ðk; kÞÞ 8k4P; Sxðk; kÞ ¼ S1ðk; kÞ 8k > P;

Syðk; kÞ ¼ imagðS1ðk; kÞÞ 8k4P; Syðk; kÞ ¼ 0�0 8k > P;

Szðk; kÞ ¼ realðS1ðk; kÞÞ 8k4P; Szðk; kÞ ¼ �S2ðk; kÞ 8k > P: ðA:6Þ

Compute a real diagonal (N�N) matrix, g, such that

coshðgÞ sinhðgÞ
sinhðgÞ coshðgÞ

" #
Sx Sy

Sy Sz

" #
coshðgÞ sinhðgÞ
sinhðgÞ coshðgÞ

" #
¼

0 O

O 2zO

" #
ðA:7Þ

in which X and 2fX are also real diagonal (N�N) matrices. This notation is chosen
deliberately to invoke a connection with the quantities on and 2zon commonly used to
define a unit-mass single-degree-of-freedom second order system.

Each diagonal entry of g can be computed separately. If the kth pair of roots is a
complex conjugate pair (k4P), then Szðk; kÞ þ Sxðk ; kÞ ¼ 0 and

gðk; kÞ ¼ 1
2
sinh�1 Szðk; kÞ � Sxðk; kÞ

2Syðk; kÞ

� �
: ðA:8Þ
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If the kth pair of roots is a pair of real roots ðk > PÞ; then Syðk; kÞ ¼ 0 and the expression
for g(k, k) is

gðk; kÞ ¼ 1
2
cosh�1 Szðk; kÞ � Sxðk; kÞ

Szðk; kÞ þ Sxðk; kÞ

� �
¼ 1

2
cosh�1 S2ðk; kÞ þ S1ðk; kÞ

S2ðk; kÞ � S1ðk; kÞ

� �
: ðA:9Þ

In this case, for g(k, k) to be a real number, it is necessary that the operand of the cosh�1(.)
function is greater than unity. For the class of symmetric second order systems in which M

is positive definite and D and K are positive semi-definite, all real roots are negative and
therefore the magnitude of the operand is necessarily greater than unity. This reasoning
alone does not guarantee that the sign of the operand is positive. Experience shows that
the ordering of the real roots described above always produces a positive operand. Since
the general case of second order systems will be dealt with shortly, it suffices to leave this
remark without further justification.

Now define (right and left versions of) W, X, Y and Z based onW0, X0, Y0 and Z0 and the
diagonal matrices c, X and 2fX

WR XR

YR ZR

" #
¼

W’R X’R

Y’R Z’R

" #
coshðgÞ sinhðgÞ
sinhðgÞ coshðgÞ

" #
X 0

0 I

" #
; ðA:10Þ

WL XL

YL ZL

" #
¼

W’L X’L

Y’L Z’L

" #
coshðgÞ sinhðgÞ
sinhðgÞ coshðgÞ

" #
X 0

0 I

" #
: ðA:11Þ

Equations (15) and (16) in the main body of the paper follow naturally with

KD :¼ X2; DD :¼ ð2fXÞ; MD :¼ I: ðA:12Þ

A.2 . GENERAL SELF-ADJOINT SYSTEMS

In the case of general self-adjoint systems, it is attractive to ensure that the left and right
transformations are identical UL ¼ UR

� �
: In order to achieve this, a more general

definition of J is needed:

J ¼

1ffiffi
2

p IðP�PÞ 0 �jffiffi
2

p IðP�PÞ 0

0 L1 0 0

1ffiffi
2

p IðP�PÞ 0 jffiffi
2

p IðP�PÞ 0

0 0 0 L2

2
666664

3
777775; ðA:13Þ

where {L1,L2} are diagonal matrices defined shortly. As before, the 2P complex roots and
associated vectors are arranged such that S2ðk; kÞ ¼ conjðS1ðk; kÞÞ for k4P. The
remaining 2Q (with Q ¼ N � PÞ roots are real.

The real roots must be collected into pairs. There is some degree of freedom in this
pairing although, as above, there are some constraints. For self-adjoint systems in general,
it is always possible to establish a pairing such that the real roots fall into three different
categories (A, B, C) of the six possible categories defined in Table A1.

When the system is self-adjoint, there is no difference between left and right eigenvectors
but even in the general case, it is readily seen that if the right eigenvector associated with a
given real root is purely imaginary, the same must be true of the left eigenvector. Similarly
for purely real left and right eigenvectors.

Let fQA; QB; QCg represent the number of pairs of real roots in each of the categories
A,B,C respectively.



Table A1

Categories of pairs of real roots

Category Product of the 2 roots Eigenvectors for root 1 Eigenvectors for root 2

A Positive Real Imaginary
B Negative Real Real
C Negative Imaginary Imaginary
D Positive Real Real
E Positive Imaginary Imaginary
F Negative Real Imaginary
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Then define L1 and L2 as follows :

L1 :¼
IQA 0 0

0 IQB 0

0 0 jIQC

2
64

3
75; L2 :¼

jIQA 0 0

0 IQB 0

0 0 jIQC

2
64

3
75: ðA:14Þ

Post-multiply equations (A.1) and (A.2) by J (from equation (A.13)) and pre-multiply by
JT. All imaginary components are eliminated from the equations by this action and the
real matrices fW0

LD; X
0
LD; Y

0
LD; Z

0
LDg; fW0

RD; W
0
RD; Y

0
RD; Z

0
RDg; and fSx; Sy; Szg are

obtained with fSx; Sy; Szg diagonal. These matrices obey

W0
LD X0

LD

Y0
LD Z0

LD

" #T
0 K

K D

" #
W0

RD X0
RD

Y0
RD Z0

RD

" #
¼

Sx Sy

Sy Sz

" #
; ðA:15Þ

W0
LD X0

LD

Y0
LD Z0

LD

" #T
K 0

0 �M

" #
W0

RD X0
RD

Y0
RD Z0

RD

" #
¼

IðN�NÞ 0

0 �IðN�NÞ

" #
; ðA:16Þ

where G1 and G2 are diagonal matrices whose diagonal entries are all either unity or its
negative. The primes are used again here because left and right versions of matrices W, X,
Y, Z will be defined differently in due course. Also, the distinction between left and right
versions is maintained for use in the more general cases.

One further transformation is required from this point. This involves finding real
diagonal matrices {N11, N12, N21, N22} satisfying

N11 N12

N21 N22

" #T
Sx Sy

Sy Sz

" #
N11 N12

N21 N22

" #
¼

0 KD

KD DD

" #
; ðA:17Þ

N11 N12

N21 N22

" #T
G1 0

0 G2

" #
N11 N12

N21 N22

" #
¼

KD 0

0 �MD

" #
; ðA:18Þ

for some real diagonal matrices {KD,DD,MD}. This problem decouples into N distinct
quadratic problems involving (2� 2) matrices.

The first P decoupled problems can be addressed by posing them initially in the form of
equation (A.7), finding solutions to that in the form of equation (A.8) and then scaling as
equation (A.10) indicates.

The next QA decoupled problems can be addressed by posing them initially in the form
of equation (A.7), finding solutions to that in the form of equation (A.9) and then scaling
as equation (A.10) indicates.
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The next QB decoupled problems involve determining {N11(k, k), N12(k, k), N21(k, k),
N22(k, k)} such that

N11ðk; kÞ N12ðk; kÞ
N21ðk; kÞ N22ðk; kÞ

" #T
Sxðk; kÞ 0

0 Szðk; kÞ

" #
N11ðk; kÞ N12ðk; kÞ
N21ðk; kÞ N22ðk; kÞ

" #

¼
0 KDðk; kÞ

KDðk; kÞ DDðk; kÞ

" #
; ðA:19Þ

N11ðk; kÞ N12ðk; kÞ
N21ðk; kÞ N22ðk; kÞ

" #T
1 0

0 1

" #
N11ðk; kÞ N12ðk; kÞ
N21ðk; kÞ N22ðk; kÞ

" #

¼
KDðk; kÞ 0

0 �MDðk; kÞ:

" #
ðA:20Þ

Solutions to this problem are possible in the form

N11ðk; kÞ N12ðk; kÞ
N21ðk; kÞ N22ðk; kÞ

" #
¼

cosðyÞ �sinðyÞ
sinðyÞ cosðyÞ

" #
a 0

0 1

" #
; ðA:21Þ

where y is determined from

ðSxðk; kÞ þ Szðk; kÞÞ þ ðSxðk; kÞ � Szðk; kÞÞcosð2yÞ ¼ 0 ðA:22Þ

and selection of a is obvious. For roots in this category, the angle y determined from
equation (A.22) is always real because Sx(k, k) and Sz(k, k) always have opposite sign.
After determination of a and y, KD(k, k) and DD(k, k) are calculated easily and
MDðk; kÞ ¼ 21:

The final QC decoupled problems involve determining {N11(k, k), N12(k, k), N21(k, k),
N22(k, k)} such that

N11ðk; kÞ N12ðk; kÞ
N21ðk; kÞ N22ðk; kÞ

" #T
Sxðk; kÞ 0

0 Szðk; kÞ

" #
N11ðk; kÞ N12ðk; kÞ
N21ðk; kÞ N22ðk; kÞ

" #

¼
0 KDðk; kÞ

KDðk; kÞ DDðk; kÞ

" #
; ðA:23Þ

N11ðk; kÞ N12ðk; kÞ
N21ðk; kÞ N22ðk; kÞ

" #T
�1 0

0 �1

" #
N11ðk; kÞ N12ðk; kÞ
N21ðk; kÞ N22ðk; kÞ

" #

¼
KDðk; kÞ 0

0 �MDðk; kÞ

" #
: ðA:24Þ

Solutions to this problem are possible in the form of equation (A.21) using y as defined
equation (A.22) and selection of a is obvious. Again y determined from equation (A.22) is
always real because Sx(k, k) and Sz(k, k) always have opposite sign. KD(k, k) and DD(k, k)
are calculated easily and in this case MDðk; kÞ ¼ 1:

A.3 . GENERAL SECOND-ORDER SYSTEMS

In the case of general second order systems, it is not necessarily possible to proceed from
the solution of equations (A.1) and (A.2) using further transformations which are
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symmetric. The eigenvectors associated with the complex roots are inherently amenable to
symmetric treatment but those associated with real roots are not.

For this reason, it is necessary in the general case to define left and right versions of the
matrix J as

JL ¼

1ffiffi
2

p IðP�PÞ 0 �jffiffi
2

p IðP�PÞ 0

0 LL1 0 0

1ffiffi
2

p IðP�PÞ 0 jffiffi
2

p IðP�PÞ 0

0 0 0 LL2

2
666664

3
777775; JR ¼

1ffiffi
2

p IðP�PÞ 0 �jffiffi
2

p IðP�PÞ 0

0 LR1 0 0

1ffiffi
2

p IðP�PÞ 0 jffiffi
2

p IðP�PÞ 0

0 0 0 LR2

2
666664

3
777775:

ðA:25Þ

As before, the 2P complex roots and associated vectors are arranged such that S2ðk; kÞ ¼
conjðS1ðk; kÞÞ for k4P. The remaining 2Q (with Q ¼ N2PÞ roots are real. The real roots
must be collected into pairs. Each of these pairs must fall into one of the six different
categories described in Table A1.

Let {QA, QB, QC, QD, QE, QF} represent the number of pairs of real roots in each of the
categories A,B,C,D,E,F respectively and define {LL1, LL2, LR1, LR2 } as follows:

diag LL1ð Þ :¼

EQA

EQB

jEQC

EQD

�jEQE

EQF

2
6666666664

3
7777777775
; diag LL2ð Þ :¼

jEQA

EQB

jEQC

�EQD

jEQE

�jEQF

2
6666666664

3
7777777775
;

diag LR1ð Þ :¼

EQA

EQB

jEQC

EQD

jEQE

EQF

2
6666666664

3
7777777775
; diag LR2ð Þ :¼

jEQA

EQB

jEQC

EQD

jEQE

jEQF

2
6666666664

3
7777777775
; ðA:26Þ

where {EQA, EQB, EQC, EQD, EQE, EQF} are column vectors with unit values in each entry
and having dimensions {QA, QB, QC, QD, QE, QF} respectively.

Post-multiply equations (A.1) and (A.2) by JR (from equation (A.25)) and pre-multiply
by JL

T. All imaginary components are eliminated from the equations by this action and the
real matrices fW0

LD; X
0
LD; Y

0
LD; Z

0
LDg; fW0

RD; W
0
RD; Y

0
RD; Z

0
RDg; and fSx; Sy; Szg are

obtained with fSx; Sy; Szg diagonal. These matrices obey equations (A.15) and (A.16)
with G1 and G2 being diagonal matrices. As before, each diagonal entry of G1 is either
unity or its negative. The same applies to G2.

One further transformation is required from this point. This involves finding real
diagonal matrices {N11, N12, N21, N22} satisfying equations (A.17) and (A.18) for some real
diagonal matrices {KD, DD, MD}. This problem decouples into N distinct quadratic
problems involving (2� 2) matrices.

Methods for finding solutions to the first ðP þ QA þ QB þ QCÞ of those decoupled
problems have been presented above.
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The QD decoupled problems arising for the category D pairs of real roots present
themselves in the form

N11ðk; kÞ N12ðk; kÞ
N21ðk; kÞ N22ðk; kÞ

" #T
Sxðk; kÞ 0

0 Szðk; kÞ

" #
N11ðk; kÞ N12ðk; kÞ
N21ðk; kÞ N22ðk; kÞ

" #

¼
0 KDðk; kÞ

KDðk; kÞ DDðk; kÞ

" #
; ðA:27Þ

N11ðk; kÞ N12ðk; kÞ
N21ðk; kÞ N22ðk; kÞ

" #T
1 0

0 �1

" #
N11ðk; kÞ N12ðk; kÞ
N21ðk; kÞ N22ðk; kÞ

" #

¼
KDðk; kÞ 0

0 �MDðk; kÞ

" #
: ðA:28Þ

with the product (Sx(k, k)Sz(k, k)) being negative. Real solutions to this problem are
available in the form

N11ðk; kÞ N12ðk; kÞ
N21ðk; kÞ N22ðk; kÞ

" #
¼

coshðgÞ sinhðgÞ
sinhðgÞ coshðgÞ

" #
a 0

0 1

" #
; ðA:29Þ

where the expression for g is available from equation (A.9) and a is trivial to find
thereafter. KD(k, k) and DD(k, k) are then calculated easily and MDðk; kÞ ¼ 1:

The QE decoupled problems arising for the category E pairs of real roots also present
themselves in the form of equations (A.27) and (A.28) and the same solution approach
(equations (A.29) and (A.9)) is appropriate. Here, the location of the minus signs in
equation (A.26) is chosen deliberately such that MDðk; kÞ ¼ 1:

The final QF decoupled problems arising for the category F pairs of real roots present
themselves in the form of equations (A.19) and (A.20). Solutions are obtainable in the
form of equations (A.21) and (A.22) may be used to determine the appropriate value of y.
Once again, the location of the minus signs in equation (A.26) is chosen deliberately such
that MD(k, k)=1 for the pairs of real roots in this category.

Three final remarks are appropriate in Appendix A.
Firstly, the case of singular M or K requires further treatment. In all of the above, the

scaling of columns of UL;UR

� �
has been such that the diagonal entries of MD are all either

unity or its negative. In fact, the scaling of these columns needs to be released for complete
generality. This is especially necessary in order that the case where M is singular can be
dealt with. The following scaling rule is a good candidate for all situations except those in
one exceptionally unlikely set.

M2
D þD2

D f �2 þ K2
D f �4 ¼ I; ðA:30Þ

where f is any arbitrary real scalar frequency (rad/s). This scaling has the considerable
attraction that it approaches ‘‘mass-normalization’’ when M is positive definite as f !1.

The only situations in which this is unsatisfactory are those where there are some real
left and right vectors, {vR, vL} such that

MDvR ¼ DDvR ¼ KDvR ¼ 0;

vTLMD ¼ vTLDD ¼ vTLKD ¼ 0: ðA:31Þ

If a scaling derived using equation (A.30) suggests extremely large scaling factors for the
vectors, then it would obviously be sensible to check that equation (A.31) does not actually
apply. If equation (A.31) does apply for some {vR, vL}, then the model evidently includes
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some completely redundant degrees of freedom which have no dynamic stiffness at any
frequency and it is not difficult to deflate the model to remove these. The set of second
order systems which satisfy equation (A.31) is so small that this possibility is dismissed
apart from that check.

Now consider the case where M is singular. Solutions to equations (A.1) and (A.2)
cannot then be found. However, replacing M by ðMþeDMÞ enables to derive solutions
provided that ðMþeDMÞ is non-singular for all e in some range. Finding the diagonalizing
transformation for numerous different values of e using equation (A.3) onwards and
subsequently scaling the solutions such that equation (A.30) is satisfied yields the scaled
diagonalizing transformation as a smooth function of e: The value of this transformation
for e ¼ 0 can then be deduced.

A similar procedure can apply for the case where K is singular. Where both K and M are
singular, replace {K, M} by fðKþeDKÞ; ðMþeDMÞg respectively.

Evidently, therefore, the diagonalizing transformation can be derived for any systems
which are not defective and which cannot satisfy equation (A.31).

The second remark concerns symmetry and UL;UR

� �
: The general procedure outlined

after equation (A.24) provides for the determination of a real diagonalizing transforma-
tion for any second order system which is not defective. The procedure for determining the
diagonalizing transformation for self-adjoint systems asserts without proof that the real
roots can be paired such that the pairs all lie in categories A, B or C (cf., Table A1) and it
shows that for these categories of pairs of real roots, symmetric transformations can be
used to retain the symmetry inherent in the original solution for the complex roots and
eigenvectors. That statement is supported by experience of a large number of cases but a
formal proof is considered beyond the scope of this paper. In a general purpose algorithm
for determining a diagonalizing transformation for a second order system, it is sensible to
pair the real roots such that as many as possible of the pairs of real roots lie in categories
A, B or C in order that the transformation resulting will return UL ¼ UR whenever the
system is self-adjoint.

Finally, for all of the pairs of complex roots and for the pairs of real roots occurring in
classes A, D and E, (cf., Table A1), the transformation from the original eigenvalue-
eigenvector form to the diagonalizing transformation form involves the use of a (2� 2)
matrix having cosh(g) for both diagonal entries and sinh(g) for both off-diagonal entries.
The condition of this matrix becomes very poor as g approaches large positive or negative
values. This in turn happens whenever a pair of real roots is very close together or
whenever a pair of complex roots are close together. If some parameter is varied such that
a pair of complex roots draw together and eventually become a pair of real roots, the
diagonalizing transformation will be found to vary smoothly throughout. Experience
suggests therefore that the poor condition of the transformation between the conventional
solution and the diagonalizing transformation is, in fact, a reflection of the particular
inappropriateness of the conventional solution method for systems having pairs of roots
close to the real-complex border.


	1. INTRODUCTION
	2. REAL DIAGONALIZING TRANSFORMATIONS FOR GENERAL SECOND ORDER SYSTEMS
	3. GENERAL CO-ORDINATE TRANSFORMATIONS FOR SECOND ORDER SYSTEMS AND STRUCTURE-PRESERVING TRANSFORMATIONS
	4. TIME-DOMAIN RESPONSE USING THE DIAGONALIZING TRANSFORMATION
	5. TIME-DOMAIN RESPONSE UNDER FULLY GENERAL TRANSFORMATIONS
	6. FREQUENCY-DOMAIN RESPONSE COMPUTATIONS
	7. MODEL-REDUCING STRUCTURE-PRESERVING TRANSFORMATIONS
	8. EXAMPLE
	9. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES
	APPENDIX A: DERIVATION OF EQUATIONS (24)FROM A STATE-SPACE APPROACH
	TABLE A1


